If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-2m=143
We move all terms to the left:
m^2-2m-(143)=0
a = 1; b = -2; c = -143;
Δ = b2-4ac
Δ = -22-4·1·(-143)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-24}{2*1}=\frac{-22}{2} =-11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+24}{2*1}=\frac{26}{2} =13 $
| 4x/2+5/4=10x-2x/2 | | 1/x-1+3/x=2/x-1 | | x-37=16 | | u/2+8=16 | | x/5=72.5 | | 3=l/3.3 | | y2-3y=0 | | 4x3+9x-5=0 | | 2x^+1=0 | | 1/3(n-1/3=1/6n | | 3x-3-2x-4=5 | | X+x÷5=18 | | 2n+8n=7+9n | | 4/5z-1/5z+1=3/5z+1 | | 1/(x^2)=0.0002 | | x2−x+4= | | x2−x+4=0 | | 4(x-3)=-(x+50 | | 8w-10+w=(4+10w+14 | | 120-4x=8x-100 | | 3(d+7)-d=2(d+10 | | 9–7(x–4)–17x=14–(5x+2)+x | | 35n^2=49n | | Y=3/5x+6 | | -4x=1=21 | | 3(6−f)−1=3f−4 | | 5.55x+81=30.8025+9x | | 3+7.2x-1,1=1,2x-4,1+x | | 5=x=-12+2x | | 2-5x=3x^2 | | 15x-83=82 | | 3v/7=18 |